

Case Study: Kiln Hood Fan

Introduction

In this case study, Machinery Diagnostics Institute (MDI) was commissioned to address a high vibration issue on a kiln hood fan at a construction plant located in Queensland, Australia. Effective vibration analysis plays a crucial role in identifying such issues before they lead to further damage or unplanned downtime.

Analysis

MDI utilized the following condition monitoring solutions to analyze the kiln hood fan and determine the root cause of its elevated vibrations:

AC292

Premium compact size accelerometer, 100 mV/g, ±5%

Curved surface mounting magnet, 15 lbs (6.8 kg) pull strength

CB108-C395-006-K2C-SF

CB108 coiled cable with C395 connector on the left, a safety feature in the middle, and a K2C connector on the right, 6 ft. (1.8 m) length

CommTest vb7 Data Collector

EDUCATIONAL COLLABORATORS

Machine Info.	Kiln Hood Fan #1	
Date	29.04.2023	
Speed	1451	RPM
No. of blades	8	
Angle between Blades	45	Degree
Rotor Weight	N/A	Kg
Rotor Diameter	N/A	cm
Device Used	Commtest VB7	

Original Run (O)	(1X) Amp mm/s	Phase
FDEH	10	349
FDEV	11	350
FNDEH	3.18	226
FNDEV	4.9	220

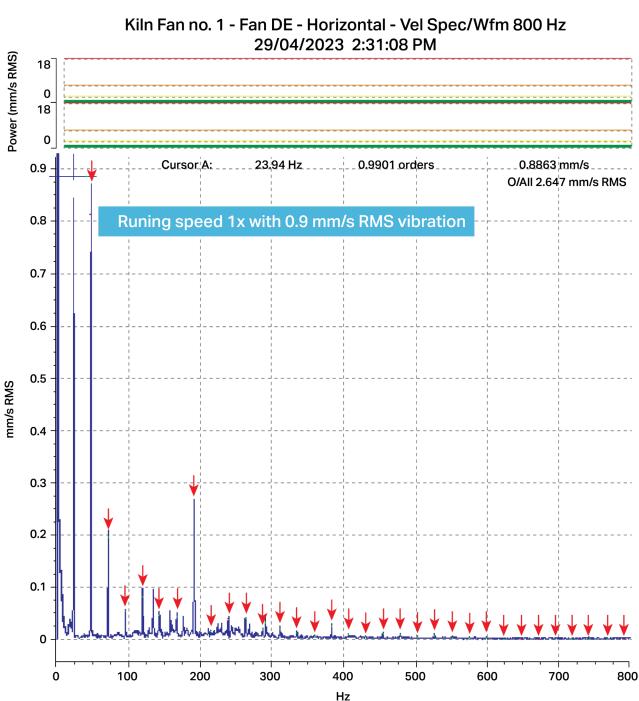
Trail weight	230 gm	270°	Removed		
Trail Run (O+T)	(1X) Amp	Phase	Estimated Corre	ection Weights	Speed of
FDEH	14.1	318	259 gm	169 ⁰	1099 Rpm
FDEV	14.1	318	217 gm	180 ⁰	60 %
FNDEH	4.1	180	277 gm	291 ⁰	
FNDEV	5.3	202	685 gm	175 ⁰	

Correction Weight	210 gm	180			_
Correction Run	(1X) Amp mm/s	Phase	Estimated	Weights	Speed of
FDEH	6.8	249	gm	0	1099 Rpm
FDEV	7.1	350	gm	0	60 %
FNDEH	1.8	183	gm	0	
FNDEV	2.3	173	gm	0	

Trim Weight	100 gm	180°	
Trim Run	(1X) Amp mm/s	Phase	Speed of 1451
FDEH	0.9	64 ⁰	Rpm 80 %
FDEV	0.9	61 ⁰	
FNDEH	0.9	200°	
FNDEV	0.6	190°	

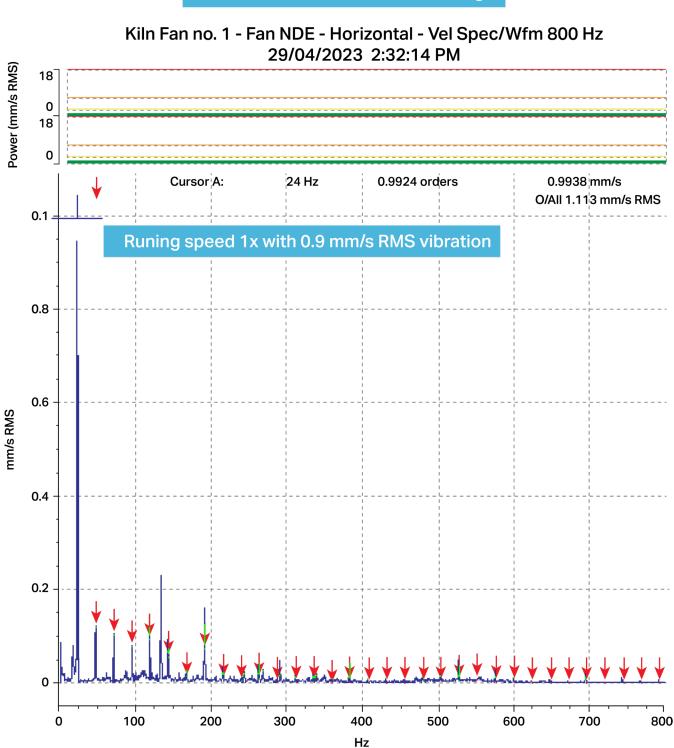
Speed of 1451 Final Readings (1X) Amp mm/s Overall Units 0.9 FDEH Rpm 80 % 1.1 mm/s FDEV 1.1 0.9 mm/s FNDEH 1 0.9 mm/s FNDEV 0.6 0.9 mm/s

Machine Layout



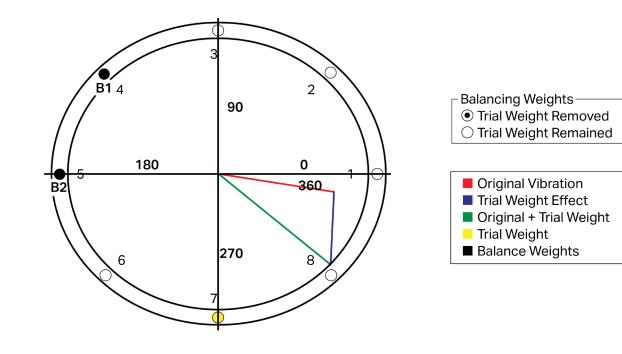
EDUCATIONAL COLLABORATORS

The Fan Drive End (FDE) - horizontal direction - vibration spectrum shows vibration levels of 0.9 mm/s RMS at the running speed of 1451 RPM - 80% - after fan balancing:


Vibration levels after fan balancing

Spectrum shows 1x and 2x, which could be caused by minor misalingnment

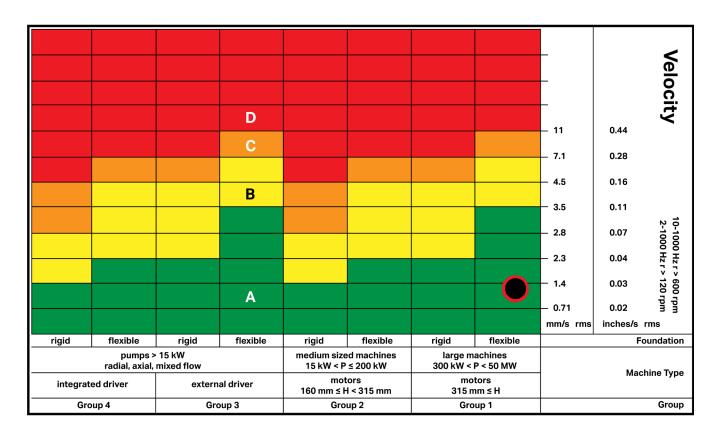
The Fan Drive End (FDE) - horizontal direction - vibration spectrum shows vibration levels of 0.9 mm/s RMS at the running speed of 1451 RPM - 80% - after fan balancing:



Vibration levels after fan balancing

Polar Plot

Influence Coefficient


0.032@357 deg mm/s/g

Original Vibration	
Original Vib. + Trial Weight	
Trial Weight Effect	

Standards

Comments and Recommendations

The fan shows acceptable vibration levels according to the ISO 20816-3 Standard at 80% of its running speed (approximately 1451 RPM). However, at 60% of the running speed (around 1080 - 1099 RPM), the vibration levels were relatively high. This is due to the fan operating near the natural frequency of the machine base, causing resonance. To avoid resonance issues, it is recommended to avoid running the fan in the 1080 - 1099 RPM range.

