
Protection & Reliability
Instruments

WA100 Series
CTC PRO

WIRELESS APPLICATION

WA100 Series Application Manual

C O N T E N T S

Quick Start User’s Guide ..4
CTC Wireless Application ..5

Installation ... 6
Starting the Application for the First Time .. 8
Running the Application .. 10
Settings ... 11
Transmitters ... 14
Taking Multiple Readings .. 23
Receivers .. 24
Sensors ... 26

The Standalone Reader ... 28
Parameters ... 28
Use Cases .. 30
Calculating 9501 or 9502 Configuration Hex Values 31
Reader Output .. 36

Developer’s Guide ... 37
CTC Wireless Project ... 37
Server .. 38
 Data Structures ... 39
 Application Flow .. 44
 Accessing the JSON File ... 47
Client .. 48

WA100 Series Application Manual

C O N T E N T S

 Data Structures ... 48
 Application Flow .. 48
 Readings .. 52
Receiver/Access Point Central ... 54
 CTCWS Project .. 54
Universal Bluetooth Integration ... 62
 Understanding the Data Structure of the CTC Sensor 62
 Taking a Reading ... 63
 Further Information .. 65

Troubleshooting ... 66
Frequently Asked Questions .. 74

WA100 Series - Quick Start User’s Guide

4

Thank you for your purchase of CTC’s Wireless transmitter system. This document
outlines various ways to interact with your new transmitters. Please refer to the
following sections based upon the needs of your setup. Additionally, contact your CTC
sales representative for information on how to download our application, or the open
source code if you plan to use your own programs to communicate with CTC Wireless
transmitters.

CTC Wireless Application Users - If you plan to use CTC’s software (including use of
the WA100 tablet) as the primary way of taking and viewing readings from CTC wireless
sensors. CTC software contains an easy way to view time-waveforms and FFTs, as
well as organize transmitters, sensors and receivers. Please refer to pages 8-27 of the
manual.

Standalone Reader Users – If you plan on using our command-line software only to
create datafiles that will be consumed by your own systems. Our software stores these
datafiles in a json format, and it is assumed that customers will have a procedure to
read/process these files as readings into their own systems. Please refer to pages
28-36 of the manual.

Raw BLE Data Users – If you plan to interface your software and platforms directly
with WA100 transmitters on a raw Bluetooth level. Please refer to pages 37-66 of the
manual.

WA100 Series - CTC Wireless Application

5

CTC Wireless Application
Requirements

 - Windows 10 minimum build version: 1703
 - Administrator Privileges
 - Bluetooth® 4.0 Receiver Built-in or Dongle
 - Microsoft SQL Server 2012 or above (See Below)
 - Approximately 1Gb of free storage (5Gb recommended) to create application

files, log files, and database records

Embedded Server Mode Requires SQL Server
This software has several different configurations. The default configuration is to run an
embedded API server, which requires Microsoft SQL Server. If you need a free version
of Microsoft SQL Server, copy and paste this link into your browser (https://www.
microsoft.com/en-us/sql-server/sql-server-downloads) and download/install the free/
specialized version “Microsoft SQL Server Express.” If you already have a Microsoft
SQL Server, after you install the software, please make corrections to the “Connection
String” in the settings to connect to your desired server.

MIT LICENSE
Copyright 2020 Connection Technology Center, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (hearafter referred to as the “Software”),
to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS,” WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

WA100 Series - CTC Wireless Application

6

Installation
1. Run the program labeled “CTC Wireless Installer”

a. Please note that this installer must be run under an administrator account
b. Read and Accept the license -> Click Next

2. Review the requirements

a. A Microsoft MSSQL Server 2012 or later is required to run the software;
make sure there is reserved space on an existing MSSQL database within
your organization, or install the free latest MSSQL Express from the

WA100 Series - CTC Wireless Application

7

Microsoft website https://www.microsoft.com/en-us/sql-server/sql-server-
editions-express

b. Click Next
3. Make sure the “Create a desktop shortcut” option is selected

a. This will allow the user to easily enable admin privileges later
b. Click Next

4. Install the application
a. Click Install

WA100 Series - CTC Wireless Application

8

Starting the Application for the First Time
The first time the application is started the Windows Firewall notification may pop up,
asking the user to grant the application access to the public and private networks. It is
best to allow the application access to both the private and public networks. If running
the embedded server, the application may only need access to the private network,
but if there is a need to change the configuration later, it would be best to give it access
to both networks.

Additionally, the user may encounter a window stating that the CTC Wireless App will
need to be run with administrative privileges.

The application requires administrative privileges in order to write the configuration
files for the embedded server, as well as write log files for sensor readings and cached
settings files for offline use.

To assign the application administrative privileges, find the desktop shortcut that the
installation created, right-click it, and select properties.

In the window that pops up, click the advanced button. When the “Advanced” window
pops up, check the box that says run as administrator, and click OK. Finally, click “Apply”
in the original “Properties” window.

WA100 Series - CTC Wireless Application

9

A confirmation dialog may appear that requires the user to provide administrative
credentials. Click continue, and if the Windows Smart Screen pops up, type the
computer’s administrative credentials into the appropriate fields.

Please note: some organizations do not allow non-administrators to install or run
unsigned programs. In this event, the application will need to be installed and run under
the Administrator account. Please see your system administrator or IT department if
you are unable to get the program to run correctly.

The application is now ready to take readings.

WA100 Series - CTC Wireless Application

10

Running the application
When you run the CTC Wireless Application, the first thing that will appear is a loading
screen. This screen may take up to 30 seconds on the first run, as it creates necessary
directories, configures the server, starts the embedded server, and synchronizes its
own configuration.

WA100 Series - CTC Wireless Application

11

Settings
Upon Successful Install and Setup, the following window will be shown.

For the moment ignore this window and jump into the software settings screen. Choose
“File” and then “Settings,” to display the screen below.

WA100 Series - CTC Wireless Application

12

To the left, there is a checklist with three main options: Run BLE AP, Run Internal Server,
and Run Interface. To the right, there is a checkbox labeled “RUN BLE AP as separate
process”. Checking this box allows the Access Point Software to run as a separate
executable on the Windows operating system. If running on a slower computer, or with
many BLE devices, or even if you are having difficulty connecting to one device, running
the BLE AP as a separate process can help improve performance of the application.
This option may help complete readings that may otherwise get bottlenecked by other
processes or slow execution on Windows.

These are the three main components of this application. They are described below in
more detail.

Run BLE AP
This document will define all of the little black boxes with MIL connectors as CTC Wireless
Transmitters. They have all been created using the latest Bluetooth® technology
called Bluetooth® Low Energy, which appeared in the Bluetooth® specification around
Bluetooth® 4.0. These transmitters all require communication with one or many central
locations. We refer to these central locations as Receivers or Access Points (AP).

The first feature of the CTC Wireless Application is the Access Point. This central point
has the code and workflow built into it in order to allow it to communicate with the
transmitters properly. Checking the “Run BLE AP” box allows you to run this software
automatically when the application starts.

When running the embedded receiver feature, the user can also assign an AP name to
this software, as it will appear in the application interface with that name.

An alternative to running this feature when the software starts is to run it as a separate
process. To do this, uncheck this box and run the receiver as a batch file. Please see
the use cases later in this document for more details on how to do this.

Lastly, the application can be run in a separate process, but not even on the same
machine, or on several other dedicated computers scattered throughout your facilities;
this is also possible through said functionality.

Run Internal Server
The internal server is the second piece of the software that runs by default. To stop
this, uncheck the second checkbox. All of the receiver/AP software that CTC builds has
integrated functionality that understands how to communicate with our server. The
server acts as a WEB API built on Microsoft’s ASP.NET Core Stack.

WA100 Series - CTC Wireless Application

13

Options are provided when running the internal software, which allow the user to turn
SSL on and off. It is possible to change the port number the server runs through, or the
connection string the software uses to communicate with an “MSSQL 2012+” server.
Essentially, this allows the SQL server to be installed in a different location from this
server or application. Warning: this feature uses a development certificate – it is much
more secure to buy and install your own certificate on your server.

If opting not to run the embedded server, it is possible to change the “Server Address”
that the rest of the software uses for sending and receiving data.

Run Interface
The last feature built into the CTC Wireless Application is the GUI or User Interface. This
interface is run off the server through a single page web application, using AngularJS,
Bootstrap, and other standard web front end frameworks.

The alternative to running the GUI through this application is to browse to the server
address through a modern web browser like Chrome, Edge, Safari, or Firefox.

Logging Folder
In addition to the location where the application saves its settings, there is another
system folder that is used to read and write configurations and pending files. This
folder is called the logging folder.

Summary
There are several ways to run this software, and it is possible to break all of the individual
pieces apart and run them separately over a distributed network, in the cloud, or
however is most convenient.  

WA100 Series - CTC Wireless Application

14

Transmitters
Once the program loading completes, the “Transmitters” window will be displayed.
Please note: when discussing Transmitters, the program refers to the individual
wireless connector components with which it communicates.

As the application begins to sense one or more CTC Wireless Transmitters, they will
automatically start to appear, as illustrated in the example window below.

WA100 Series - CTC Wireless Application

15

When sensors begin to appear in the application, they will appear with the text “New
Transmitter Click Here to Setup.” You will not be able to use your new transmitters with
this software until you have completed a short setup process.

Clicking one of the new transmitter cards will create a prompt to either set up a new
transmitter or replace an old one.

Setting up a new transmitter
When setting up a new transmitter, the only requirement is to fill in the Transmitter
Name field. Doing this and clicking the save button will allow the new transmitter to be
used. 

WA100 Series - CTC Wireless Application

16

Replacing a Previous Transmitter
When replacing an old transmitter, the user will be asked to provide the name of the
transmitter to replace. Select the old transmitter’s name from the list, and click the
button labeled Replace Old Transmitter.

After a brief pause, the interface will refresh, and the new transmitter will assume
the role of the previous one. It will inherit all of the properties of the old transmitter,
including the name. All previous readings (viewable in the readings pane) will have been
automatically transferred to the new transmitter.

Advanced Transmitter Options
Lastly, on the transmitter settings screen, there is a link labeled “Click here to show
advanced options.” Click this to see some of the more advanced options for taking
readings.

1. Transmit Power – the strength of the wireless signal sent from the transmitter.
By default, the power is set to its highest setting of 8 dBm but can be adjusted
to lower values as the situation permits. Changing to a lower value is useful to
conserve battery life if the receiving device is located in very close proximity
to the wireless transmitter. However, weaker signal strength reduces the
overall range, and you may experience some signal loss.

WA100 Series - CTC Wireless Application

17

2. Noise Reduction – the ability to produce a smooth signal output by averaging
signal readings. By default, this is set to a low value of 4, meaning each data
point is an average of 4 readings on the sensor. The other options available are
“None,” “Medium,” and “High.” None allows the highest sampling rate with no
smoothing (1 reading for every point), while medium and high offer smoother
and the smoothest signals, respectively. The drawback to higher levels of
noise reduction is that the maximum sample rate frequency will be reduced.

3. Transmit Rate – the data rate at which the receiver will talk to the transmitter.
Most BLE compatible computers will only support the 1 Mbps option.
However, if the users’ computer uses a newer BLE chip, it may be able to use
the 2 Mbps option. If 2 Mbps is chosen and the computer does not support it,
the system will fall back to the 1 Mbps option. Please note that using 2 Mbps
requires closer distances between the transmitter and tablet/receiver. After
the first reading, additional information about the sensor will be accessible.

4. Settle Time – the settle time of a transmitter should be set minimally to the
settle time of the sensor. Settle time can be configured to wait for up to
2.55 seconds after applying power to a sensor to take a reading, which is
necessary because all sensors take a brief amount of time before the signal is
flat after being turned-on/powered.

5. Model Number – The model number of the transmitter.
Hardware Revision: The hardware revision of the transmitter board.
Firmware Revision: The firmware revision on the transmitter board.
Software Revision: The software revision on the transmitter board. (Not the
reader software)

Back on the Transmitters window, we will look more in-depth at a sensor indicator.
Please see some additional options, as illustrated below.

1. The device name - this can be changed in the device settings. When a sensor
is first discovered, it sets to the ID of the transmitter.

2. The battery indicator - displays either Battery OK when a sensor is running
with good power or Battery Low when a sensor needs to be replaced.

65

4
3

21

WA100 Series - CTC Wireless Application

18

3. The sensor’s description - this is also configurable through the device
settings. When a sensor is first discovered, this field is set to the ID of the
transmitter. For identification purposes on this screen, it’s good to keep either
Name or Description as the transmitter ID. It is recommended to leave the
name as the ID and use the description as the user identifier.

4. The “Edit” button - brings up the Edit Device screen, as seen in the previous
example.

5. The sensor’s status indicator - if you are in the vicinity of the sensor and are
not taking a reading, this will display Available. It can also show a series of
other statuses, like Connecting, Connected, Ready, Requesting, Receiving, or
Done, based on the current operation. Lastly, if the sensor is not in the vicinity,
dead, or not available, the status will display Offline.

6. Delete and Hide options - Delete erases the sensor and all of its readings from
the database, while Hide removes the sensor from view.

a. If you choose to delete a sensor, and it is not truly gone (dead or out of
range), it will reappear once discovered again.

b. Deleting a sensor erases all of its associated readings, so please practice
caution when deciding to delete a sensor.

c. If you simply don’t want to see a sensor, sometimes it is better to hide it, as
this removes it from view.

d. Instead of hiding, another option for removing a sensor from view is to put
it in a group. Best practice would be to logically group all sensors based on
some shared detail like location or use.

7. In the window containing all of the sensors, there is an option that says “Show
Hidden Sensors.” Checking this box shows all previously hidden sensors,
allowing the user to unhide, or perform any other set of actions on said
sensors.

Clicking anywhere else on the sensor indicator box other than the Edit, Hide or Delete
links, opens the sensors reading pane.

WA100 Series - CTC Wireless Application

19

At first, this pane shows no data, as illustrated below.

Check the “Request Reading” checkbox, to initiate a reading.

After checking this box, the sensor will cycle through the other statuses: Connecting,
Connected, Ready, Requesting, Receiving, or Done, until a successful reading is taken.
If there a weak signal or latency, the sensor may connect and disconnect several times
before completing a successful reading.

WA100 Series - CTC Wireless Application

20

Once a reading has been taken, the output is displayed in the Waveform and FFT graphs.

Click the edit notes button to keep any relevant notes about the readings for later
review. The View History link displays all previous readings from that sensor.

The other option on this screen is the Stage Reading option. Stage reading is similar
to the request reading option; however, it does not automatically initiate a reading. As
the label implies, it merely “stages” or puts the sensor in a state where a reading can
be immediately requested. Staging is useful for scenarios where the user has to initiate
a reading without delay. For example, the startup of a piece of equipment or any other
timing-sensitive event, where waiting for the sensor to initialize will cause said event to
be missed.

WA100 Series - CTC Wireless Application

21

It is important to note that staging a sensor is the most intensive operation for battery
usage. It is recommended to use this feature sparingly, and utilize Request Reading
whenever possible.

Please note: in the previous example, a sensor has not been selected. As a result of no
sensor being selected, the output is displayed in ‘mV’s and not ‘g’s. Creating a sensor
is described in the next section.

Lastly, clicking the back button opens the primary sensor screen.

Cleaning Up Readings
The WA102 transmitter is intended for use with 100 mV/g accelerometers. If attached
to an accelerometer with a higher or lower response frequency, it might display erratic
readings. Due to this possibility, the CTC Wireless application includes noise reduction
functionality to help filter out junk data. For information on how to apply these filters,
please refer to the Noise Reduction table on page 34.

WA100 Series - CTC Wireless Application

22

On the left-hand side of the screen, please notice two other sections.

1. Receivers
2. Sensors

WA100 Series - CTC Wireless Application

23

Taking Multiple Readings
Use the following procedure to take multiple readings simultaneously.

1. Stage multiple sensors.

2. Click the Take Reading button on the last sensor.

3. All staged sensors will provide a reading at the same time.

WA100 Series - CTC Wireless Application

24

Receivers
This section holds a distinct record for each receiving device that has registered/
synchronized with the server.

A receiver can be a couple of things.

1. First, a receiver may be a program just like the one you are using. This program
can act as a receiver, a server, a user interface, or any combination of those
devices. By default, the program operates as all three options at once.

2. Second, a receiver can be command-line based. It can be a scheduled task
that opens a command-line version of the receiver program. This utility and its
configuration options are described later in this document.

3. Third, a receiver can be a dedicated computer that sits within the vicinity of a
series of sensors/transmitters to take on-demand or scheduled readings. For
example, a small Linux powered computer that takes readings and forwards
them on to a server.

In the example below, the receiver is the application itself, and has automatically
assumed the name “My Access Point.”

WA100 Series - CTC Wireless Application

25

Like the sensors section, the receivers allow the user to fill in and save information
to make them distinct and provide some specific operational data. Please note that
receiver names are stored on the receivers, so overwriting the name in the form shown
below has no effect. The receiver name needs to be maintained on each device or
implementation.

There is a section in the example below that shows all of the “Devices Watched.”
The screen shows several transmitters that have been discovered by the receiver.
Each has an empty checkbox to the left of the transmitter name. When a receiver is
configured to watch a particular transmitter (or transmitters), no other receiver will be
able to connect to that transmitter(s), unless that other receiver is also configured to
watch that transmitter(s) as well. Alternatively, if no receivers are watching a particular
transmitter, any receiver within range will be allowed to connect and take a reading.

This feature is useful when partitioning specific receivers to watch specific transmitters.
It may be done to reduce latency, or logically keep particular groups of equipment
separate from others within the sensor network.

WA100 Series - CTC Wireless Application

26

Sensors
This section is useful for setting up and providing essential details about the actual
transmitters purchased from CTC. The important details that may be recorded about a
sensor include model number, description, serial number, and sensitivity.

The first three fields are self-explanatory:

 - Model, the sensor model number
 - Description, to record any other relevant information
 - Serial, the serial number of the sensor being used

Last is Sensitivity, the fourth field. This field is used to convert readings from ‘mV’ to
‘g’ or ‘IPS’ values, back on the transmitter pane. The sensitivity field is also dynamic.
The user can always come back and make small adjustments to the sensitivity, which
will instantaneously and retroactively affect any readings done with the connected
sensor. This process is useful for custom scaling of the output, so the user can pseudo
calibrate a sensor with a known vibration level.

Under Default Sensor, enter the desired sensor to take readings. Enter the sensitivity
that came with the calibration certificate of the sensor. The above example uses an
AC312-1A sensor, which will have a 25 mV/g sensitivity.

WA100 Series - CTC Wireless Application

27

When entering the sensitivity, be sure to use the following format:

“{Numeric Value} mV/{Unit Of Sensor Output}” (i.e. “25 mV/g”).

The blank space between the number and the measurement unit is essential. It ensures
that the program can parse the data correctly in the readings window.

Click Save.

In the transmitters section, find the
transmitter that connects to the created
sensor, click the Edit button, choose the
sensor, and click Save.

Just as before, click in the sensor indicator
to go to the reading pane, and check the
“Request Reading” box to take another
reading.

This time, once the reading is complete, an
output will display that reads ‘g’s or ‘IPS’s
based on the sensor configuration entered.

Please note that if a sample rate is too low,
the amplitude may be artificially low or high,
as low sample rates diminish amplitude
accuracy. Although the Nyquist formula
recommends a minimum sample of 2.56
times the expected maximum frequency, 5
times is recommended for a more accurate
amplitude calculation.

It is useful to have an existing knowledge of the vibration level an application produces.
Once a useful amplitude calculation is obtained, slight adjustments can be made to
sensitivity in the sensors window so that output is an exact match.

WA100 Series - The Standalone Reader

28

The Standalone Reader
The standalone reader is a command-line based application that comes bundled with
the CTC Wireless Application. The reader is included to take on-demand and scheduled
readings.

The most straightforward script is “CTCWS.BLE.READER.exe -watchall 1 -target
CTCWS_58E5” which will automatically engage as watching all transmitters and target
the transmitter named CTCWS_58E5. The result is the reader attempting one successful
reading (with all default settings) from CTCWS_58E5 and sending the resulting data to
the default server (http://localhost:7939).

Parameters
Here is a list of all the parameters that are available for the reader program:

watchall
Using the “-watchall 1” argument is recommended for any automatically scheduled
reading. This setting overrides any watch limitations imposed by the server. In many
cases, the reader cannot connect to a server and will save the output locally until a
server is within range. It is not recommended to use this option in continuous mode.

target
The “-target CTCWS_58E5” argument tells the program to automatically take a reading
from a device it finds called “CTCWS_58E5”. There is no default target, and the use case
for not providing this value is when running the reader in “continuous” mode, where the
reader is always running and reacting to requests from the server.

server
The “-server https://localhost:1234” argument can be used to change the server
address which this application uses to communicate. The default configuration uses a
value of http://localhost:7939, which is the default server if this option is not provided.

folder
The “-folder C:/Scan” argument can be used to change the folder in which
the program loads its configuration and saves its temporary outputs.
C:\ProgramData\CTC\CTCWS.SCAN is the default if this value is not provided.

WA100 Series - The Standalone Reader

29

apid
The “-apid cc8f1b91-60f4-4e84-b69f-082ebb075ae8” argument can be applied to
allow distinct and separate records for each of the readers. All readers assume a default
value of “0DEFA170-DEFA-DEFA-DEFA-DEFA17DEFA17” if this value is not provided.

savelocal
“-savelocal 1” This argument allows the user to save local copies of the readings for
other purposes like consumption by a different program/software. The default is 0 and
will only save pending files, which will then be deleted when the server is available to
collect them.

justpending
“-justpending 1” The reader can be run with this argument to only upload any pending
readings, and not attempt a new reading. The application does this every time, and the
default of 0 will run the program normally where it tries to upload any pending files first,
then runs the data collection.

c9502
“-c9502 010000000A0D0202FFC80000” allows the user to enter a custom
configuration. Please see the next section on how to calculate a 9502-configuration
hex value. The default is either the last configuration fetched from the server for this
device or a software default if the server configuration is not available and has never
been fetched.

c9501
“-c9501 00000BB8” allows the user to enter a custom number of samples to be taken.
Please see the next section on how to calculate a 9501-configuration hex value. The
default is either the last configuration fetched from the server for this device or a
software default if the server configuration is not available and was never retrieved.

continuous
“-continuous 1” places the reader into “continuous” mode. This setting prevents a
timeout of the application, and it will run forever. Such a configuration is useful when
operating a device as a permanent reader. This program can run in the background
or minimized, and react to any server requests for readings. When the reader is not in
“continuous” mode, the default timeout is 4 minutes. If there are no successful readings
within 4 minutes, the application will automatically exit.

WA100 Series - The Standalone Reader

30

Use Cases
Navigate to the application install directory to find some examples which illustrate two
use case scenarios.

“C:\Program Files (x86)\CTC Wireless Application\cmd”

Use Case 1
“usecase1.bat” - The scheduled reading – This example is intended to be set up in the
windows scheduler. Running the batch file once attempts a reading, as described at the
beginning of this section. It will be helpful to have previously run the GUI at least once
and connected to the server you are using, as all settings will otherwise be the default.
Using the GUI interface allows you to adjust the reading setting, which is saved to a
local file. If the server is unavailable when the scheduled task executes a reading, the
local file will serve as a reference to the desired settings, and the reading will perform
as intended.

For an introduction on how to use the Windows task scheduler, look at this article from
Experts Exchange: https://www.experts-exchange.com/videos/1598/How-to-use-
the-Windows-Task-Scheduler-An-Introduction.html.

Use Case 2
“usecase2.bat” – The standalone reader – This example uses all the defaults in the
previous case, but remains open continuously. It is best practice to schedule this batch
file to exist on a schedule that runs every minute and bypasses the next run if the
program is already running. This way, if something happens and the program closes or
crashes, it can always wakeup again with the next scheduled run. In this example, you
would run a server and configure this program to connect to it. The use case uses the
default server of http://localhost:7939/.

An important feature prevents the program from staying open while in continuous
mode. This feature is to close the application if the timeout has passed, and there is
no server connection available. If the scheduled task has been set according to the
previous paragraph, the program will exit after the 4-minute timeout has expired, and
launch another instance at the next scheduled run. Each new instance attempts a fresh
connection to the server. This feature prevents an inactive reader in the event a server
connection was lost.

Use Case 3: An uploader
“usecase3.bat” – A simple program that you could run every couple of minutes to
upload any pending readings.

WA100 Series - The Standalone Reader

31

Calculating 9501 or 9502 Configuration Hex Values
Please see the tables below for the configuration of each of the bytes strings that
represent 9501 and 9502.

SERVICE - CONFIG - 0x9500
CHAR NAME SAMPLES* CONFIG MEM_SIZE† STATUS

UUID 0x9501 0x9502 0x9503 0x9504
ATTRIBUTES R/W R/W R R/W/N

BYTE1 SAMPLES 31...24 FREQ MEM_SIZE 31...24 MODE_SET
BYTE2 SAMPLES 23...16 SLEEP 31...24 MEM_SIZE 15...8 MISSED_PACKET

31...24
BYTE3 SAMPLES 15...8 SLEEP 23...16 MEM_SIZE 7...0 MISSED_PACKET

23...16
BYTE4 SAMPLES 7...0 SLEEP 15...8 MISSED_PACKET

15...8
BYTE5 SLEEP 7...0 MISSED_PACKET

7...0
BYTE6 TX PWR
BYTE7 TX RATE
BYTE8 NOISE_REDUCTION
BYTE9 255

BYTE10 SENSOR_SETTLE
BYTE11 CAL_TIME
BYTE12 CAL_VAL

* This is how many samples the sensor will take at the configured frequency. Writing to this characteristic starts the reading. If Bytes1-Bytes4 are 0
the unit will go back to sleep.

† This is the buffer memory size in samples.

Status to Sensor
0 Don’t Change
1 Go to sleep for “SLEEP” seconds
2 Go to shipping mode
3 Retransmit Missed Packet
4 Retransmit Last Reading
5 Prepair Sensor for Reading
6 Send Battery Voltage

Status from Sensor
100 Transfer Done
101 Sensor Ready for Reading (staged mode)
102 Battery level in mV
150 ERROR: Conversion Still in Process
151 ERROR: Incompatible Noise Reduction
152 ERROR: Too Many Samples Requested
153 ERROR: Frequency Too High
154 ERROR: TX Rate Invalid
155 ERROR: TX Power Invalid

How to Interpret the Status Column

WA100 Series - The Standalone Reader

32

SERVICE - DATA - 0x9600
CHAR NAME DATA

UUID 0x9601
ATTRIBUTE R/N

BYTE1 PACKET_NUM
23...16

BYTE11 SAMPLE4
15...8

BYTE2 PACKET_NUM
15...8

BYTE12 SAMPLE4
7...0

BYTE3 PACKET_NUM
7...0

BYTE13 SAMPLE5
15...8

BYTE4 CHECKSUM BYTE14 SAMPLE5
7...0

BYTE5 SAMPLE1
15...8

BYTE15 SAMPLE6
15...8

BYTE6 SAMPLE1
7...0

BYTE16 SAMPLE6
7...0

BYTE7 SAMPLE2
15...8

BYTE17 SAMPLE7
15...8

BYTE8 SAMPLE2
7...0

BYTE18 SAMPLE7
7...0

BYTE9 SAMPLE3
15...8

BYTE19 SAMPLE8
15...8

BYTE10 SAMPLE3
7...0

BYTE20 SAMPLE8
7...0

Checksum is the lowest byte of the sum of all bytes.
Samples need to be multiplied by 3600 then divided by
4096 to get mV.

Packet Length is dynmaic from 20 bytes(8 samples)
to 247 bytes(121 samples). If data packet has an odd
number of bytes, the last one will be disregarded.

WA100 Series - The Standalone Reader

33

Open the computer calculator app, and navigate to the programmer section.

Once there, type the value to convert (i.e., 1000). The text next to the label for “HEX”
will display something like “3EB.” Take this value and pad ‘0’ on to the left until the text’s
length is eight characters (i.e., 000003EB). That will become the value for the c9501
argument (i.e. “-c9501 000003EB”).

9502
9502 is a bit trickier in that there are several variables bundled into this byte string.
See the table from the beginning of this section for reference.

Byte 1 is the sample rate: use the calculator to calculate the hex string for a value
between 1 and 40. A value of 1 (01 in hex) represents 1 kHz, and a value of 42 (2A in
hex) represents 40 kHz. If the output is less than two characters, pad the left with ‘0’
until the length is two characters.

Byte 2 – 5 is the device sleep time; this is the amount of time the device will “turn off”
in-between advertising cycles. The default in our software is 10 seconds, but this value
can be set anywhere from seconds to years. Warning: Misuse of this field will result in
a sensor that virtually never returns from sleep.

WA100 Series - The Standalone Reader

34

Byte 6 is the transmit power. Use this table to determine what your value should be:

Use the calculator to calculate the hex string for a value between 1 and 13. A value of
1 (01 in hex) represents -40 dBm, and a value of 13 (2A in hex) represents 8 dBm. If the
output is less than two characters, pad the left with ‘0’ until the length is two characters.
Additionally, 00 can be used to use the last value entered.

Byte 7 refers to the transfer rate. Use the table below to determine the appropriate
value.

Byte 8 is noise reduction, use this table to determine the appropriate value.

Use the calculator to calculate the hex string for a value between 1 and 4. A value of 1
(01 in hex) represents no noise reduction, and a value of 4 (04 in hex) represents high
noise reduction. Make sure if the output is less than two characters, pad the left with
‘0’ until the length is two characters. Also, 00 can be used to use the last value entered.

TX PWR VAL TX PWR
0 Don’t Change
1 -40 dBm
2 -20 dBm
3 -16 dBm
4 -8 dBm
5 -4 dBm
6 0 dBm

TX PWR VAL TX PWR
7 2 dBm
8 3 dBm
9 4 dBm

10 5 dBm
11 6 dBm
12 7 dBm
13 8 dBm *default*

NOISE_REDUCTION VAL LEVEL
0 Don’t Change
1 Off
2 Low (Oversample = 4) *default*
3 Medium (Oversample = 8)
4 High (Oversample = 16)

Note: Low requires sample rate less than 48 kHz
Note: Medium requires sample rate less than 24 kHz
Note: High requires sample rate less than 12 kHz

TX RATE Val TX Rate
0 Don’t Change
1 2 Mbps
2 1 Mbps *default*
3 125 kbps coded
4 auto

Note: 125 kbps will not work with most devices

WA100 Series - The Standalone Reader

35

Byte 9 is advertising timeout, use this table to determine your value.

Use the calculator to calculate the hex string for a value between 1 and 4. A value of 1
(01 in hex) represents an Advertising Timeout of 10 seconds, and a value of 255 (FF in
hex) represents no timeout. If the output is less than two characters, pad the left with
‘0’ until the length is two characters. Additionally, 00 can be used to use the last value
entered.

Byte 10 is the sensor settle time. For this byte, choose a value between 01 and 255. A
value of 1 (01 in hex) means .01 second and 255 (FF in hex) implies 2.55 seconds.

Bytes 11 and 12 are in place for calibration factors that will be rolled out in a future
update. By default, this value should be four zeroes (0000).

Finally, take all the values calculated for each byte and string them together like this:

0F + 0000000A + 0D + 00 + 02 + FF + FF = 0F0000000A0D0002FFFF0000

Double check that the length of the string is 24 characters long; if not, go back and
recalculate the values.

Warning: Entering invalid data could put the sensor into an irretrievable state, so be
sure to triple-check any calculations.

WA100 Series - The Standalone Reader

36

Reader Output
The basic structure of the reader’s output is as follows:

{time} - {name}{channel} - [connection status] - [request status] -[status note]

Interpreting a single line of output:

{time} – The time of the current diagnostic

{name} – The assigned name of the sensor, maximum ten characters

{channel} – The diagnostic output channel

[Connection status] - {Available}{Connecting}{Connected}{Ready}

[request status] – {Watched}{Staged}{Requested}

Below are some sample status outputs that will display when the reader is running:

14:39:47 - CTCWS_58E51 - 1000 - 100 – Available

14:39:47 - CTCWS_58E51 - 1100 - 101 – Connecting

14:39:52 - CTCWS_58E51 - 1110 - 101 – Connected

14:39:56 - CTCWS_58E51 - 1011 - 101 – Ready

14:39:57 - CTCWS_58E51 - 1011 - 101 – Requesting

14:40:00 - CTCWS_58E51 - 1011 - 101 – Receiving

14:40:01 - CTCWS_58E51 - 1011 - 101 – Complete

Output Definition
1000 The reader has located the sensor
1100 The reader is attempting a connection
1110 The reader successfully connected to the sensor
1011 The sensor is available to take a reading

Note: 1011 will display for each stage of a reading. Refer to the status
note to determine the individual stage of the reading.

Output Definition
100 Watched
110 Staged
101 Requested

WA100 Series - Developer’s Guide

37

CTC Wireless Project

This next section examines the individual components that comprise the CTC Wireless
application, and the programming details needed to incorporate them into an existing
system.

CTCWS.BLE.NET
The core application is made up of 3 pieces of software, which features several different
configurations. The CTCWS.BLE.NET program functions as a bundled installer for
these separate software pieces further explained below:

 - Server - Simple RESTFUL API with an underlying database
 - Client - HTML Interface implemented in HTML, CSS, and Javascript
 - Receiver - Windows 10 / BLE 4.0+ Capable Device that supports UWP

The default configuration is to run an embedded API server, which is described by the
server section of this guide. The other parts of the default configuration are running an
embedded copy of the reader app, and the interface described in the interface section
of this guide. Refer to these sections for more information about the different parts of
this program.

The Wireless Sensor - For Developers
 - Bluetooth® and Configuration Information - An Excel Document outlining

the Bluetooth® Services and Characteristics and acceptable values for each
Characteristic.

 

WA100 Series - Developer’s Guide

38

Server
The server acts as a central repository for all readings, sensor data, and access point
data. The client and the reader connect to the server to retrieve and update the sensor,
access point and reading information.

Technology Used / Requirements
 - .NET Core 2.2 - Compatible with Windows, Mac and Most Linux Platforms

• Web API - The application uses Web API as the communication mechanism
between the server, receiver, and client.

• REST - Most of the data objects are exposed through a RESTFUL format.
However, access to the core RESTAPI has been disabled for security
purposes; the functions critical to the operation of this application are
available through a supplemental implementation.

• SingnalR - A socket-like communication framework that servers can use to
communicate with HTML/Javascript front ends.

• Dapper - Dapper has been used as an alternative to the Entity Framework.
Dapper provides excellent raw execution performance with minimal
overheads and allows the user to retain control over the SQL.

• JSON - JSON is the default technology for Web API, and has been selected
for this project, being more lightweight and less strict than XML.

 - Microsoft SQL Server 2012 or Above - While this application should work with
any MSSQL2012+, SQL Express was used to develop the current CTC Wireless
Application. SQL Express is a free, world-class database provided as an entry-
level offering to their paid enterprise SQL server platform. It is an excellent
choice for a small database like this, which gives the implementer room to
grow should they someday (or already) want to use the enterprise version. SQL
Express can run on Windows, Linux, and Docker.

 - Other Databases - Since the server application is the only entry point into
the database interaction, we have focused on our implementation to run on
MSSQL. However, it would be a relatively easy modification to communicate
with other database platforms such as MySQL, SQL Lite, or Oracle.

WA100 Series - Developer’s Guide

39

Data Structures
Primary Data Structures

/// <summary>
/// A BLE device
/// </summary>

public class Device

{
public Guid? id { get; set; }
public string name { get; set; }
public string description { get; set; }
public string notes { get; set; }
public string addr { get; set; }
public int? samples { get; set; }
public int? frequency { get; set; }
public int? sleeptime { get; set; }
public int? txpower { get; set; }
public int? txrate { get; set; }
public int? noisered { get; set; }
public int? advtimeout { get; set; }
public int? centralwait { get; set; }
public string master { get; set; }
public string sleeptimeuom { get; set; }
public string advtimeoutuom { get; set; }
public string centralwaituom { get; set; }
public int? settle { get; set; }
public string stat { get; set; }
public string dt { get; set; }
public bool? stage { get; set; }
public int? battery { get; set; }
public bool? request { get; set; }
public bool? hidden { get; set; }
public Guid? sensor { get; set; }
public Guid? devicegrp { get; set; }

}

/// <summary>
/// A BLE device reading
/// </summary>

WA100 Series - Developer’s Guide

40

public class Reading

{
public Guid? id { get; set; }
public string dt { get; set; }
public string addr { get; set; }
public int? samples { get; set; }
public int? frequency { get; set; }
public int? noisered { get; set; }
public string points { get; set; }
public int? settle { get; set; }
public string notes { get; set; }
public Guid? device { get; set; }
public Guid? sensor { get; set; }

}

/// <summary>
/// A BLE Access Point
/// </summary>

public class Accesspoint

{
public Guid? id { get; set; }
public string name { get; set; }
public string description { get; set; }
public string dt { get; set; }
public string addr { get; set; }
public string devices { get; set; }

}

/// <summary>
/// A Physical Sensor Readings are taken from (I.E. AC314-1A)
/// </summary>

public class Sensor

{
public Guid? id { get; set; }
public string name { get; set; }
public string description { get; set; }
public string serial { get; set; }
public string sensitivity { get; set; }

 }

WA100 Series - Developer’s Guide

41

Shared Data Structures

/// <summary>
/// A Grouping of Devices
/// </summary>

public class Devgroup

{
public Guid? id { get; set; }
public string name { get; set; }
public string description { get; set; }

}

 /// <summary>
/// Copy and paste of the classes that are in CTCWS
/// </summary>

public class SlimBluetoothLEDevice

{
public ulong BluetoothAddressAsUlong { get; set; }
public string SamplesPerSecond { get; set; } = “1”;
public string SamplesToTake { get; set; } = “1000”;
public string TimeToSleep { get; set; } = “60”;
public string TransmitPower { get; set; } = “13”;
public string TransmitRate { get; set; } = “2”;
public string NoiseReduction { get; set; } = “2”;

public string AdvertisementTimeout { get; set; } = “30”;
public string TimeToWait { get; set; } = “120”;

public string DeviceName { get; set; } = “No Name”;
public string DeviceDescription { get; set; } = “”;
public string DeviceNotes { get; set; } = “”;
public bool DeviceMaster { get; set; } = false;

public string TimeToSleepUOM { get; set; } = “S”;
public string TimeToWaitUOM { get; set; } = “S”;
public string AdvertisementTimeoutUOM { get; set; } = “S”;
public string Settle { get; set; } = “200”;
public bool Stage { get; set; } = false;
public bool Request { get; set; } = false;

}

WA100 Series - Developer’s Guide

42

Interface/Client Data Structures

/// <summary>
/// The data contained within a reading
/// </summary>

public class WSReading

{
public DateTime dt { get; set; }
public SlimBluetoothLEDevice dev { get; set; }
public Dictionary<int, WSPacket> Packets { get; set; } = new Dictionary<int, WSPacket>();
public string Notes { get; set; } = “”;

}

/// <summary>
/// A single packet of data within a reading
/// </summary>

public class WSPacket

{
public int Num { get; set; }
public bool Waiting { get; set; }
public List<int> Points { get; set; } = new List<int>();

}

/// <summary>
/// A collection of the reading and fft
/// </summary>

public class WaveData

{
public bool setStageFalse = false;
public Conn.Reading reading { get; set; }
public string fft { get; set; }

}

/// <summary>
/// A simple version of the reading for the search results
/// </summary>

public class SimpleReading

WA100 Series - Developer’s Guide

43

Tertiary Data Structures

{
public Guid id { get; set; }
public string notes { get; set; }
public string dt { get; set; }

}

/// <summary>
/// an opject to do a partial update on the status of an object
/// </summary>

public class StatUpdate

{
public ulong BluetoothAddressAsUlong { get; set; }
public string Status { get; set; }
public int Battery { get; set; }

}

/// <summary>
/// A Generic SearchResult
/// </summary>
/// <typeparam name=”T”></typeparam>

public class SearchResult<T>

{
public int ct { get; set; }
public T obj { get; set; }

}

/// <summary>
/// A Count Object
/// </summary>

public class Count

{
public int ct { get; set; }

}

WA100 Series - Developer’s Guide

44

Application Flow
There is no real flow to the server component of this application, as each endpoint
represents a stateless action to the interface. Listed below are the parameters the GUI
and Receiver portions of the application use.

Device Methods
 - url: api/Device, method: GET

• This endpoint returns all sensors that have been added to the database.
 - url: api/DeviceImpl2, method: GET

• This endpoint returns all sensors that have been added to the database in the
SlimBluetoothLEDevice format used by the reader application.

 - url: api/DeviceImpl2, method: POST
• This endpoint updates the staged status of a sensor.
• It expects a Device object to be passed as JSON in the body of the request.

 - url: api/DeviceImpl2, method: POST
• This endpoint receives a reading, appends it to the database, and creates the

device if it doesn’t already exist. It also creates FFT and WAV files.
• It expects a WSReading object to be passed as JSON in the body of the

request.
 - url: api/Device/{Device ID}, method: PUT

• This endpoint updates the reading settings of a sensor.
• {Device ID} should be the valid GUID of a sensor.
• It expects a Device object to be passed as JSON in the body of the request.

 - method: DELETE, url: api/DeviceImpl2/{Device ID}
• This endpoint deletes a sensor and all of its readings from the database.
• {Device ID} should be the valid GUID of a sensor.

Access Point Methods
 - method: GET, url: api/Accesspoint

• This endpoint will return all the access points that have been added to the
database.

 - method: GET, url: /api/AccesspointImpl2?id={Access Point ID}
• Gets the information for a single access point.
• {Access Point ID} should be the valid GUID of an access point.

WA100 Series - Developer’s Guide

45

 - method: PUT, url: api/Accesspoint/{Access Point ID}
• This endpoint updates the settings of a specific access point.
• {Access Point ID} should be the valid GUID of an access point.
• It expects an Access Point object to be passed as JSON in the body of the

request.
 - method: DELETE, url: api/AccesspointImpl2/{Access Point ID}

• This endpoint deletes a specific access point from the database.
• {Access Point ID} should be the valid GUID of an access point.

Reading Methods
 - method: PUT, url: api/ReadingImpl2/{offset}/{limit}

• This endpoint allows a partial set of data to be returned. Use it for paging
data.

• It expects a Reading Guide to be passed as JSON in the body of the request.
• {offset} is where to set the current lookup, while {limit} limits the number of

results returned.
• This method is a PUT because its base implementation allows the PUT of a

full reading object for the purpose of searching.
 - method: DELETE, url: api/ReadingImpl2/{Reading ID}

• This endpoint allows for the deletion of a specific reading.
• {Reading ID} should be the valid GUID of a sensor.

 - method: GET, url: api/ReadingImpl2?xid={Device ID}
• This endpoint gets the very last reading for a specific sensor.
• {Device ID} should be the valid GUID of a sensor.

 - method: GET, url: api/ReadingImpl2/{Reading ID}
• This endpoint gets a specific reading.
• {Device ID} should be the valid GUID of a sensor.

 - method: PUT, url: api/ReadingImpl2
• This endpoint allows the notes of a reading to be updated.
• It expects an Access Point object to be passed as JSON in the body of the

request. Only the notes will be allowed to pass through for updates.
 - method: POST, url: api/ReadingImpl2

• This endpoint allows the status of a reading to be updated.
• It expects an Access Point object to be passed as JSON in the body of the

request. Only the status will be allowed to pass through for updates.

WA100 Series - Developer’s Guide

46

Group Methods
 - method: “GET”, url: api/devgroup“

• This endpoint will return all the groups that have been added to the database.
 - method: = “POST”, url: api/devgroup/”;

• This endpoint creates a new group.
• It expects a Group Object to be passed as JSON in the body of the request.

 - method: = “PUT”, url: api/devgroup/{Group ID}
• This endpoint updates the settings of a specific group.
• {Group ID} should be the valid GUID of a group.
• It expects a Group Object to be passed as JSON in the body of the request.

 - method: “DELETE”, url: api/devgroup/{Group ID}
• This endpoint deletes a specific group from the database.
• {Group ID} should be the valid GUID of a group.

Sensor Methods
 - method: “GET”, url: api/Sensor“

• This endpoint will return all the sensors that have been added to the database.
 - method: = “POST”, url: api/Sensor/”;

• This endpoint creates a new sensor.
• It expects a Sensor object to be passed as JSON in the body of the request.

 - method: = “PUT”, url: api/Sensor/{Sensor ID}
• This endpoint updates the settings of a specific group.
• {Sensor ID} should be the valid GUID of a sensor.
• It expects a Sensor Object to be passed as JSON in the body of the request.

 - method: “DELETE”, url: api/Sensor/{Sensor ID}
• This endpoint deletes a specific sensor from the database.
• {Group ID} should be the valid GUID of a sensor.

Common Methods
 - method: “PUT”, url: api/{Type}/name/{Offset}/{Results Per Page}/1“

• This method retrieves a paged result of objects of a particular type sorted
alphanumerically by its name.

• {Type} - The type of object being queried (sensor, devgroup, reading, device,
accesspoint).

WA100 Series - Developer’s Guide

47

• {Offset} - The paged offset - start at the defined value.
• {Results Per Page} - the number of results to return.

It expects an object of { name: {searchtext}} to be passed as JSON in the body of the
request.

Accessing the JSON File
Launch the software, then open a browser and enter https://localhost:7939 in the
address bar. This will load a web version of the software. Press F12 to the browser’s
inspection tool, and click on the Network tab at the top of the inspection window. Once
the Network tab is selected, access a reading, in the browser and the reading address
will be displayed in the inspector window. Click on the address of the reading, and then
select the Response tab in the window that appears. The JSON data will be displayed
here.

WA100 Series - Developer’s Guide

48

Client
The client to the software is a simple single-page web app. It appears as the default
page shown by the CTC Wireless Application, or can also be browsed to by pulling up
the address of a CTC Wireless Server in a browser window.

Technology Used / Requirements
 - CefBrowser - CefBrowser is a Chromium web pane that can be drawn onto any

.NET Framework Web Form or Windows XAML Window.
 - Angular JS and Bootstrap 4 are common web development frameworks that

were used to build the client application.
 - FontAwesome - is used for icons and symbols.
 - SignalR - is used for socket-like communication with the server.

Data Structures
Except for the shared data structures, the client application uses the same data
structures as the server. Please review the server section to understand which data
objects are being passed between the server and the client.

Application Flow
There are four entry points into the application, which are represented by four URL
formats used by the angulars routing engine.

 $routeProvider

// The default view - devices and groupings

.when(“/”, {
templateUrl: “views/main.html”

})

// The device view - defaults to current reading data

.when(“/sen/:devid”, {
templateUrl: “views/red.html”,

})

// The Reciever/AP view - see all recievers and APs

.when(“/aps/”, {
templateUrl: “views/apmain.html”,

})

WA100 Series - Developer’s Guide

49

Initialization
The application behaves like any other Angular JS application and is kicked off by the
ng-init directive.

The initialize function does the following:
 - Starts up a SignalR Connection with the server.
 - Sets an interval to refresh the data on the page.
 - Initializes all the fields and their defaults.
 - Refreshes the data - As long as there is nothing in process, the refresh fetches

the following data.
• All Devices
• All Access Points
• All Sensors
• All Groups

Main Application
At this point, the application is live, and the rest of the program is based on events that
come from the server, the automatic refreshes, or user actions.

// looking at one ap - not implemented

.when(“/aps/:apid”, {
templateUrl: “views/apred.html”,

})

// The Sensor view - see all sensors

.when(“/sensor/”, {
templateUrl: “views/sensormain.html”,

})

// looking at one sensor - not implemented

.when(“/sensor/:sensorid”, {
templateUrl: “views/sensorred.html”,

});

<div id=”content” ng-app=”ctcws.app” ng-controller=”AppCtrl” ng-init=”initialize()”>

WA100 Series - Developer’s Guide

50

The user can choose to change:
 - Devices: (Edit, Delete, Update, Hide)

• A reader discovering a new device handles creation.
• The view feature brings the user to a window where they will see the latest

reading.
• Reading: (Edit Notes, Delete)

The reading pane also has a path to get to the history of readings stored by
the database.

 - Sensors: (Create, Edit, Delete, Update)
• Viewing Sensors is not implemented.

 - Device Groups: (Create, Edit, Delete, Update)
• Viewing Device Groups is not implemented.

 - Access Points: (Edit, Delete, Update, Hide)
• Creation is handled by a server being notified by a new reader.
• Viewing Access Points is not implemented.

All of the classes of objects in the system utilize roughly the same set of functions for
CRUD operations, lookup, and searching.

SelectableList Component
The ‘selectableList’ component is created for the management of objects within the
application. It significantly reduces some of the mundane coding required to set up the
interfaces for managing individual objects and has been used extensively throughout
this application.

<selectable-list array=”appdata.devices” val=”appdata.seldeviceid”
edit=”true” sl-class=”col-6” folder=”devices”
 filter=”{devicegrp: ‘!’}”
selectfcn=”selectDevice” pre-validationfcn=”saveDevice”
saveselect=”false” cancelfcn=”canDevice”
loadfcn=”loadDevice” delete=”true” delfcn=”delDevice”
other=”{timeuom:appdata.timeuom,freqs:appdata.freqs,
noises:appdata.noises,txpowers:appdata.txpowers,
settles:appdata.settles,showhidden:appdata.showhidden,
advtimeouts:appdata.advtimeouts,adtimeoutchg:adtimeoutchg}”
othfcn1=”hideDevice”></selectable-list>

WA100 Series - Developer’s Guide

51

The ‘selectableList’ allows the user to show a collection of an object type and provides
access to edit, delete, add, and update functionality by exposing these calls to functions
in the appropriate scope. Every ‘selectableList’ is defined with a folder that points to
its list and modal templates; if no folder is assigned, the primary folder is chosen by
default. For creating unique templates, its best to make a copy of the primary folder, as
much about the way these lists work can be derived from the functionality presented
by the basic templates. These template folders can be found in the lists folder.

Within a ‘selectableList,’ a collection is shown by rendering a set of bootstrap divs; this
is managed by a list template that defines how each list will appear and which shared
buttons are available. When a user presses the Add or Edit buttons, they are presented
with a modal screen, which is driven by a modal template of the ‘selectableList’ folder.
The modal is a form that should have fields that represent the type of object being
edited. The modal contains some functionality for validation, and any other utilities
common of Angular JS templates.

Typical functions include: Save, Delete, Cancel, Edit/Load, Set, and Select. Pressing the
save button invokes a save operation on the main scope. Pressing the delete button
on the list invokes a delete operation on the main scope. When a modal opens, a load
function is fired that allows for added functionality to be performed before a modal
fully loads. A Select function on the list allows for custom functionality on the main
scope, which redirects to a new URL governing the object the user has selected. A
cancel function exits the modal and does not save changes.

Here is a basic outline of the functions paired with each class of objects needed by
the selectable list:

1. $scope.select{Type} = function (x, y, z)
a. Happens when the user selects an object. It redirects to the URL that

governs that object. The redirection causes the routing change to fire, and
the interface will transport the user to the applicable pane on the interface.
This is implemented primarily by the device object.

2. $scope.save{Type} = function (x, cb)
a. Gives the user a new set of data that can be saved to the database.

3. $scope.can{Type} = function (x, cb)
a. Primarily cancels the modal popup.

4. $scope.load{Type} = function (ob, tx, oth)
a. Allows the user to edit the data of an object as it is loaded into the modal.

WA100 Series - Developer’s Guide

52

5. $scope.del{Type} = function (x)
a. Allows the user to handle the delete action of a selectableList object.

6. $scope.setSel{Type} = function (x, y)
a. The reaction to the change to the route, resulting in an object being

selected, and additional functionality being performed.
7. function set{Type}(x)

a. The actual code that selects the particular object.

The use of ‘selectableList’ controls much of the front end tasked with managing object
properties for this application, and the navigation needed for seeing different views for
a given object.

Routing
This application uses the angularjs $routeProvider to determine which screen the user
should be seeing based on the URL they are visiting.

Most importantly, when a user selects a device, the ‘selectableList’ component invokes
the ‘selectDevice’ function, which redirects our screen to the correct URL that governs
that device. The redirection invokes angularjs’s $routeChangeStart event which makes
variable adjustments in the program, including filling in the appropriate data object, so
the user is transported to the correct window on the interface. As is standard with
Angular JS routing, the whole sequence of routing events will also occur if a user
navigates to the same URL for a specific device.

SignalR
The initialization sequence starts up a connection to a SignalR server. The SignalR
server is used to transmit new readings and status information to users logged into,
and watching the live updates on, a specific device.

Readings
When the server receives a reading, it is broken apart into its wav and fft components.
Sensitivity information is gathered from the linked sensor, and calculations are
performed on the reading and fft to convert its value to g or IPS or another UOM
provided by the sensor. If no sensor is linked, the program defaults to display mV. The
end arrays of readings and fft data are then sent to the ‘drawGraph,’ which prints them
to the screen using the ‘Dygraph’ javascript graphing library.

WA100 Series - Developer’s Guide

53

The same functionality applies if a user browses to a historical reading, or when the user
first connects to a device which brings up the very last reading. The only difference is
that these historical readings are read through WebAPI calls.

Status Updates
As the sensors connect and prepare to take readings, a series of status messages are
sent to the SignalR server, which is then logged and also passed back to any users
signed into the device, which is broadcasting its status.

Requesting, Staging or Executing a Reading
The final purpose SignalR serves is to send messages when a user checks the Request/
Stage check-boxes, or click the Execute Reading button on a staged device. These
events send messages to the server, which will be passed onto the reader to signal that
something is supposed to happen. The reader reacts by taking said action(s), which
results in the initialization of each process that is supposed to occur on the readers.

WA100 Series - Developer’s Guide

54

Receiver/Access Point (Central)
Next to the sensor’s actual functioning, the Receiver/Access point software is the most
essential piece of functionality for using the CTC Wireless Sensors. Without a receiver,
all the user has are RAW Bluetooth® transactions, which would prove difficult, if not
impossible, to complete sensor readings.

Technology Used / Requirements
 - Bluetooth® 4.0+ BLE Communication
 - Windows 10
 - UWP - Universal Windows Platform

CTCWS Project
 - CTCWS.BLE.LIB (UWP) - The core library that controls and manages the

Bluetooth® connections and all of the data that goes with them.
• Connection level functionality and logic were borrowed from Microsoft’s

open-source Bluetooth® LE Explorer project.
• Minimal edits to the original files and inclusion of partial files afford added

functionality required by the CTC Wireless Sensor App.
• All Deviations are labeled mod or modx.
• The CTC Sensor file represents the core logic specific to the current iteration

of the CTC wireless sensor as of Q4-2019. Said functionality would find
one of many sensors in the vicinity, connect to them, set any/all reading
parameters, and record a reading.

 - CTCWS.BLE.NET.LIB - This is a wrapper class for the UWP functionality for ease
of use in .NET Framework.

 - CTCWS.BLE.READER - This is a bare-bones command-line application that
uses the .NET wrapper library to take readings.

 - CTCWS.BLE.NET - The GUI part of the project, mainly this serves as a shell
to house and start the reader functionality, run or connect to the server, and
display web front-end/GUI.

CTCWS.BLE.LIB (UWP), CTCWS.BLE.NET.LIB, CTCWS.BLE.READER
The CTCWS.BLE.LIB project derives from the Microsoft Open Source Project Bluetooth®
LE Explorer. Bluetooth® LE Explorer is a generic BLE reader program that can be used
to connect to any BLE sensor, browse its information and execute raw Bluetooth®
functionality. This core functionality of connecting to sensors, enumerating properties,
and setting/getting characteristic data has primarily been reused from Microsoft’s

WA100 Series - Developer’s Guide

55

Bluetooth® LE Explorer project. There was enough new functionality specific to the CTC
Wireless Transmitter that it derives from the project rather than forks development. As
a result, the CTC Wireless App has become a new software development on its own.

The Bluetooth® LE Explorer was MIT licensed by Microsoft, allowing CTC to use the
code and make modifications to achieve the desired result. We have used this benefit
to create the CTC Wireless App, a program that communicates with a CTC Wireless
Transmitter to change configuration settings and ultimately take wireless vibration
readings. The files that were reused from the Bluetooth® LE Explorer have been kept
as unchanged as possible, keeping the Microsoft copyright intact, and also allowing
for the merger of any future development by Microsoft into said files. For more
information on Bluetooth® LE Explorer, visit the GitHub page for Bluetooth® LE Explorer.
Additionally, the Bluetooth® LE Explorer user application is freely available through the
Microsoft Store and can serve as a useful side program to the CTC Wireless App. It was
utilized during development for performing diagnostics and debugging CTC Wireless
Transmitters outside of the CTC Wireless App.

Examining the Project
Upon opening the CTCWS.BLE.LIB project, the user will notice three main folders
(GattHelper, Models, and Services). Everything in the ‘GattHelper’ and ‘Services’ folders
was directly borrowed from the Bluetooth® LE Explorer project. It also contains utility
classes that serve functions useful for data conversion and BLE protocol definitions.
These are important to the underlying Bluetooth® communication but do not serve the
CTC Wireless Reader with any direct functionality. The Models folder houses the critical
functionality for the CTC Wireless Reader. Take note of the file naming convention.
Any files that do not end with modx.cs or mod.cs (except CTCSensors.cs) are the core
files packaged with Bluetooth® LE Explorer. These are the same files that were in the
Bluetooth® LE Explorer project but have had small changes made to get them to work
with the rest of the CTC code. Any files labeled modx.cs or mod.cs are modifications to
the original program, and finally, the single file named CTCSensors.cs is the core logic
for working with a CTC Wireless Sensor. The first part of the name of sets of files is the
same. This is because any file with the same first part of its file name belongs to the
same C# class. Using C# partial files allowed for this functionality.

Application Flow
CTCWS.BLE.READER and CTCWS.BLE.NET.LIB act as a segway into describing the
application flow of the CTCWS.BLE.LIB project. CTCWS.BLE.READER is a straightforward
project which collects some command-line arguments and passes them onto a series
of properties in the CTCWS.BLE.NET.LIB class called ‘NETGattSampleContext.’ These

WA100 Series - Developer’s Guide

56

properties control such behavior as which server to connect to, what folder stores
output, how to communicate a timeout, and what id/names to use for identification.
‘NETGattSampleContext’ also exposes a ‘load()’ function that starts the reader
routine, which serves as the primary means of creating and executing an instance of
the underlying GattSampleContext class. The instance of ‘NETGattSampleContext’
represents the receiver as an object to all implementing .NET Framework programs. It
also handles all of the communication with the server and file system. Communications
include transmitting status updates and readings or storing configurations and pending
reading files to the file system. ‘NETGattSampleContext’ also is a wrapper class to the
CTCWS.BLE.LIB(UWP) class ‘GattSampleContext,’ which holds all the functionality
required to communicate with a CTC Wireless Transmitter. The whole reader process
is started from the load() function through a call on the GattSampleContext of
‘StartEnumeration().’

Flow from within the GattSampleContext
When the ‘StartEnumeration()’ function begins to run, it uses .NET UWP Bluetooth®
functionality to collect advertisements from nearby Bluetooth® devices. It looks closely
at each advertisement looking for a device that starts with a prefix of ‘CTCWS_.’ When it
finds these devices, it encapsulates a reference to them in a new instance of its device
class called ‘ObservableBluetoothLEDevice.’ When an ObservableBluetoothLEDevice
is created, it also creates and holds onto a reference to an overarching “Work Flow”
class that implements the IBLEDevice interface. The new instance is then queued in an
array of objects that are available to establish a connection.

A side note on the “class implementing the IBLEDevice interface:” it functions similarly
to a “Work Flow” class, which is designed to do all the high-level and implementation-
specific communication with a connected device. In the case of this program, it is
represented by the CTCSensor class. As mentioned above, this class handles all of the
functionality specific to the CTC Wireless Sensor.

Additionally, the ‘IBLEDevice interface’ has been designed to be independent of the
communication protocol (despite its name). The program is built for expansion, allowing
the addition of new future implementations of the IBLEDevice interface in order to
connect to sensors or protocols that may be implemented in the future.

When an end-user with the CTC Wireless App places a Request or Stage command
on a sensor, a field in the database is set, indicating what the user wants to do. On the
reader, each time a device advertisement is received, the application requests updated
data from the server. When the new data is collected, if the application sees that the
user has placed a command, it initiates a connection to that device.

WA100 Series - Developer’s Guide

57

The connection is initiated through the ‘_Connect()’ function of the
ObservableBluetoothLEDevice class. Generally, what the _Connect() function does
is make sure everything is in the right state for a connection, resetting any other
state-specific variables and allowing the user to connect with a fresh start. Next, the
actual connection is run by the native ‘Connect()’ command (no underscore). The
Connect command runs a ‘GetGattServicesAsync’ on the native BluetoothLEDevice
object, which collects all BLE services, and creates ‘ObservableGattDeviceService’
out of them. This process of enumerating, collecting, and encapsulating continues
down to the descriptor level in the BLE structure until the full object is described, and
everything is quantified.

Meanwhile, on the ‘ObservableBluetoothLEDevice’ class, a previously set up
CharDiscovered function gets notified for every characteristic that each service finds.
This function is waiting for there to be a match to a target characteristic name so that
it can be confident that the sensor it is talking to legitimately is a CTC Wireless Sensor.
Once this happens, the IsReady flag is set to true. Setting the IsReady to true
invokes the ‘SensorInit()’ function of the CTCSensor(IBLEDevice), which initializes the
higher-level logic of the CTCSensor implementation.

Flow from within CTCSensor
In the CTCSensor implementation, the SensorInit function call first gets the reading of
the four critical characteristics.

By now, the CTCSensor object also has a copy of the configuration parameters that
the user requested (gathered from the server data). It compiles a hex string of new
configuration data for the sensor and compares it to the configuration that was read
from the server. If there is a difference, it writes the configuration to the server.

The call also engages notification on the p9601 (Data Received) and the p9504
(Status Changed) characteristics. This occurrence creates a listener. A Bluetooth®
characteristic is analogous to a property or a field. Engaging a notification registers
change notifications to said characteristics.

<code csharp>
string w = await o.Read(p9501, DisplayTypes.Hex); // The number of samples to read
string x = await o.Read(p9502, DisplayTypes.Hex); // The configuration of the sensor
string y = await o.Read(p9503, DisplayTypes.Hex); // THe max memory size of the sensor
read only
string z = await o.Read(p9504, DisplayTypes.Hex); // The sensor status

<code>

WA100 Series - Developer’s Guide

58

After resetting a few additional variables, the program is ready to collect some data. If
the user made an ordinary data request, all that happens is a value is written to the 9501
(number of samples to read) characteristic. If the user made a Staged data request, the
sensor must be staged by writing a ‘05’+(number of samples hex) to the 9504(sensor
status) characteristic.

Doing this should result in receiving a 101 code on the ‘StatusChanged()’ function.
When this is received, the status is updated, which returns to the user, showing an
“Execute Reading” button. When the user clicks the button, SignalR sends a command
“STAGEGO,” which will initiate a reading on any readers connected to a staged sensor.

On the reader, starting a reading is handled by writing the number of “Samples To
Take” to the p9501 characteristic. Once this happens, the user begins to receive data
packets on the p9601 (Data Received) characteristic. Data is parsed and converted
to int values by the DataPacketRcv() function. All of these values are saved to a List in
order of reception until no more packets are received. At the same time, the program
looks for a 100 command, which indicates that the sensor is finished sending data. At
this time, a flag is set indicating that the data is ready for validation.

Once the reader has stopped receiving new data for over .3 seconds and the ‘ready to
validate’ flag is set, validation of the data begins. If some packets are missing, the reader
starts a loop to request specific packets and attempt further validation. If more than
49 readings were missed, the reading is declared as failed, and the reader disconnects
from the sensor.

<code>
string samples = o.hexFromDec(SamplesToTake, 8);
 //”000007D0”; // 2000 Samples -
 // Watchout the max samples and min sample
 // rate will produce a sensor that samples for 48+ days
 // I dont think the memory will hold this though.
 //await logData(“Requesting Data”);
 //string c9501 = samples;
 //var _w = await Write(p9501, c9501);
 // 05 is the command to tell the sensor to go into staging mode
string mode = “05”;
// Compile the command
string c9504 = mode + samples;
// Write the command
var _z = await o.Write(p9504, c9504);

<code>

WA100 Series - Developer’s Guide

59

If the collection of all readings is successful, the Success command is executed, and
the reader returns the data to the original NETGattSampleContext through an Action
object. The NETGattSampleContext receives the data and posts it to the server, or
saves it to a file.

Finally, the Reader disconnects from the sensor. That concludes the reading.

WA100 Series - Developer’s Guide

60

WA100 Series - Developer’s Guide

61

WA100 Series - Developer’s Guide

62

Universal Bluetooth Integration
This section provides a second, more platform-agnostic approach to capturing a
signal. It’s intended for those who want to take readings directly from the sensor but
don’t want to review our code examples or source code to get the generic process for
taking a reading.

Understanding the Data Structure of the CTC Sensor
1. Download Microsoft’s Bluetooth LE Explorer App to assist in understating the

workflow.
2. Follow steps 1-8 describing the Bluetooth LE Explorer in the Troubleshooting

guide on page 71 to get a live example of the scan below.

3. The highlighted sections reperesent the essential characteristics to notate.
This manual will refer to them by the last four characters of the first block, i.e.,
9501,9502, and so on.

a. 9501 - The number of samples to read
b. 9502 - The configuration of the sensor

WA100 Series - Developer’s Guide

63

c. 9503 - The max memory size of the sensor read-only
d. 9504 - The sensor status
e. 9601 – The reading data

4. Clicking on individual characteristics inside the BLE Explorer app provides
more information about how they can interact.

5. Clicking on 9504 or 9601will display a Notify toggle. This is available because
the CTC Sensor expects that the user will enable Notifications on these
characteristics to take readings. Enabling this feature in any programming
language will prime the sensor to send back information about status and
readings, as these events occur.

6. Characteristics 9501,9502, and 9503 will display values. These values are in
hex and need to be converted to decimal. If a reading has never been taken
before, these values will also appear random. A reading has been taken in the
previous example, so the output below will have logical conclusions.

a. 9501 - The number of samples to read: 0x000001F4 -> 500
b. 9502 - The configuration of the sensor -> 0x0F0000000A0D0002FFFF0000.

Please refer pages 31 and 32 for details on parsing these values.
c. 9503 – This value is for reference, and describes the max memory size

of the sensor. Don’t initiate a reading that will exceed the following value:
0x0003D090 -> 250000

7. 9501,9502 will be overwritten whenever a reading is taken.

Taking a Reading
1. Read the configuration (9502) of the sensor to variable “_C”
2. Decide how many samples will be requested in hex as variable “S”, i.e.

500 -> 0x000001F4

WA100 Series - Developer’s Guide

64

3. Compile the configuration of the sensor in hex as variable “C”. Please review
pages 31 and 32 to compile this value.

4. Write the value of C to characteristic 9502. Please note that this is only
necessary if the value needs to be changed. Compare values _C and C to
determine if an update is required. Optionally, specifically targeted variables
in 9502 can be changed by hardcoding 0s into other parts of the 9502
configuration.

5. Enable notifications on both 9504 or 9601.
6. Writing the value of S to characteristic 9501 will initiate the reading.
7. As the readings start to come in on 9601, record them to a buffer object

containing entities that consist of a packet number and a reading value array
or string.

8. Multiple reading responses will be received, and a potential status change in
9504 by the time all packets have been received.

a. The status change in 9504 to a value of 100 indicates that the sensor’s
transfer has finished.

b. While this value indicates completion on the sensor side, the operating
system usually has its own buffer to handle the incoming data, which it turns
over to the program when it is ready. As such, a 9504 value of 100 may
come in before the readings are done.

c. Once the readings stop (usually indicated by silence for more than half a
second), begin to process the readings, check that all of the packets have
arrived, and then begin converting the byte arrays that you received into
an integer array. Please refer to the BLE Data Structure Excel file for more
information on how to interpret a reading. To convert the integer values to
mV, multiply the value by 3600 and divide by 4096.

d. The result should be a collection of numbered packets that the user can
concatenate into a time waveform.

e. This will provide waveform data for its intended end use.
9. Put the sensor to sleep if that is part of the configuration. This is done

by writing 1 to the status characteristic 9504 (A sleep value of 0 in the
configuration will not sleep the sensor, but should assist in disconnect)

10. Clean up application memory (dispose of objects, deallocate memory, etc.),
and disconnect from the sensor.

11. Repeat as necessary for all sensors.

WA100 Series - Developer’s Guide

65

Further Information
1. Refer to the BLE Data Structure document for more detailed information on

status requests that can be sent.
a. Other status scenarios include retrieving the battery level, handling a

missing data packet or reading, etc.
2. Review the Standalone Reader section on pages 28-34 of this manual, as

this provides more specific details about the characteristics that would help
compile data to initiate a reading.

3. Lastly, refer to the first section of the Developer’s Guide beginning on page 35,
or request a link to our open source project of the CTC Wireless application to
review our code for a better understanding.

Troubleshooting

66

This troubleshooting guide assumes that all of the prerequisites to running the CTC
software have been installed on a computer with compatible Bluetooth hardware,
running on the appropriate updated version of Windows 10.

Keeping the software up-to-date
Make sure the computer is running the latest version of the software. (This section is
not applicable for a first-time installation on a new computer.)

1. Using the following address, open the CTC website and download the latest
version: https://www.ctconline.com/ctcws/ctc_wireless_installer.zip.

2. The following window while running the installer, which will identify the version
(highlighted in green). Record this number for reference, and close the installer.

3. Open the software, click the Help menu, and click the About option. The
resulting dialog box will display the version number.

Troubleshooting

67

4. If the Help menu and About option are absent, the current software platform is
a prerelease version. Uninstall the software and proceeded to the “SQL Server
Schema Updates” section, as the database must be deleted to perform the
reinstall.

5. Reinstall the software.
6. Review the release notes under Help -> Change Log. If the words “schema

change” appear between the previously installed version and the newer
version, the version migration SQL scripts must be run. The location of these
scripts will be noted in the changelog. Proceed to the “SQL Server Schema
Updates” section to complete the installation of the change scripts.

Please Note: Updates must be installed sequentially from the currently installed
version to the next newest until the software is up to date.

SQL Server Schema Updates.
1. Using the following address, download and install Microsoft SQL Management

Studio to update the database: https://docs.microsoft.com/en-us/sql/ssms/
download-sql-server-management-studio-ssms?view=sql-server-ver15.

2. When opening Microsoft SQL Management Studio for the first time, the
defaults should allow users to log directly into the local database.

3. Expand Databases and find the “ctcwsapidb” database.
4. If deleting the database from a prerelease version of the CTC software:

a. Right-click the database and choose “Delete.”

Troubleshooting

68

b. Check the box titled “Close existing connections” in the window that pops
up, and press OK.

c. Once this completes successfully, reopen the latest version of the CTC
software. This will automatically connect and rebuild the database to the
newest version.

5. When installing version migration scripts:
a. Make sure “ctcwsapidb” is selected, and choose File > Open and navigate to

the file noted in the changelogs.

b. Click the “Execute” button.

Troubleshooting

69

Bluetooth Driver
If the driver for your Bluetooth hardware is out of date, follow these steps to update.

1. Right-click the Windows start button in the lower-left of the screen and
choose “Device Manager” from the menu that pops up.

2. Find the Folder called “Bluetooth” and expand it.
3. Look for a Bluetooth device with a vendor name next to it.

4. Right-click that device and choose update driver.
5. If this does not work, Google the name of the device and the word “driver.”

a. In the image above, it would be “Qualcomm QCA9377 Bluetooth Driver.”
b. Download and reinstall the driver from the manufacturer’s website.

Diagnosing Connection Issues
1. The CTC Wireless Software can decouple the execution of the reader software

from the graphical software.
2. In the software, click the File then Settings.

Troubleshooting

70

3. Uncheck the “Run BLE AP” checkbox and the “Run BLE AP as separate
process” if that is checked.

4. Click Save, and then (re)start the application.
5. Using Windows Explorer, navigate to the installation directory for the

application, and then to the “cmd” directory that sits within, and open it.
6. Run the usecase2.bat file to start the Reader application inside a command

prompt. Double click and run usecase2.bat if you haven’t already.
7. Both applications should be running. If not, close the command prompt and go

back to step 4.
8. In the Wireless Application on the right, find a sensor, and go through the

setup process if not previously done. (i.e. Setup as a new sensor -> Give it a
name -> Click Save).

9. Open the sensor by clicking on it and click the Request checkbox on that
sensor.

Troubleshooting

71

10. A successful reading should look like the previous screens. There may not be
as many lines if there are only 1 or 2 sensors, but if the reading is successful
and a timewave form and FFT open on the screen, the output of those lines will
represent a reading from beginning to end.

11. If the application is having difficulty connecting, the computer may be too far
away from the sensor or there is too much interference. This can be identified
by looking at the numbers in parenthesis –

a. 08:06:50 - CTCWS_4AEE35(-77)1 - 1011 - 1010 - Requesting-DeviceStatus
b. Difficulties may begin to occur when this number is -82 or lower.

12. If no sensors are shown and do not show up after 15-30 seconds, go to the
next section, “Bluetooth LE Explorer.”

Bluetooth LE Explorer
This is an application from Microsoft that we have found useful in ruling out hardware
related issues for the variety of makes and models of computers that run our software.

1. On a Windows 10 computer, open the Microsoft store.
2. Click the search button and type “Bluetooth LE Explorer.”
3. Install the application.
4. Once the application is installed, run it from the start menu.
5. Click the “Continuous Enumeration” checkbox, type “CTCWS” in the Filter,

then click the “Start” button.
6. The application will begin to scan for CTC Bluetooth sensors.
7. When one appears, click in the blue area of the found sensor. Do not click the

pair button.
8. This action will initiate a connection and enumerate all the properties of the

sensor; the same was as the CTC software. If you see a new window that
looks like this, it means that your computer was able to enumerate the device
successfully, and everything should be ready to go for the CTC application to
take readings.

Troubleshooting

72

9. If any error messages appear, the sensor may be out of range or be
incompatible with the Bluetooth hardware in use.

a. Keep in mind that occasional connectivity errors may occur, due to line of
sight, range, or other environmental interference. The CTC software deals
with this by implementing a retry mechanism; however, in some cases, it will
continue to retry for over 15 minutes and never be able to take a reading.
While the software typically takes a reading in 20-45 seconds. It is possible
that in scenarios of high interference, it could take up to 2-3 minutes to take
a successful reading.

b. First, take the sensor into an area largely devoid of radio interference. Place
the computer as close as possible to the sensor as (i.e., < 10 ft.) and attempt
to connect as described above.

1. Upon connection, open the CTC software and attempt to take a reading.
2. If a reading is successfully taken, take several more to determine that

connectivity is not due to a hardware issue.
3. Reinstall the sensor and take additional readings.
4. If readings can reliably be taken in the test above but not in the desired

installation setting, there is likely an environmental factor preventing the
CTC wireless sensor from communicating successfully.

5. In the CTC Wireless Software, click file then settings. In the filter field,
enter one or more wireless sensors (comma separated). Type the id of the
sensor, usually “CTCWS_” followed the six-character serial code. Click
Save and restart the app. Repeat steps 1-4.

Troubleshooting

73

c. If this does not solve the issue, reboot the computer and try again.
d. If you continue to see errors, go back to the section of this troubleshooting

document that explains how to reinstall your Bluetooth driver, and make sure
you have the latest driver for your Bluetooth hardware.

e. If all else fails, or you see the application partially working, but not
consistently, you may not have Bluetooth hardware that is compatible
with our wireless sensors. We recommend that you head out to your local
computer supply store, purchase and install a new Bluetooth 5.0 USB
dongle, or head over to the CTC website and purchase the tablet that we
offer for taking readings from the CTC Wireless Sensor.

Frequently Asked Questions

74

How close does my tablet need to be to the desired transmitter to receive data?
The tablet must be within 150 ft. of the desired wireless transmitter in order to receive
data.

Will my tablet still receive data if there are obstructions between the tablet and the
transmitter?
BLE Bluetooth signals will allow for some level of obstructions. The material composition
of obstruction will determine the level of signal loss. We have seen moderate signal loss
with materials like drywall, and complete signal loss with other materials like reinforced
concrete. Any obstructions will produce some level of signal loss and reduce the
maximum distance you are able to receive data within. For best performance, Line-of-
Sight is recommended.

If my tablet is not within 150 ft. of the transmitter, can I daisy chain transmitters to
collect data?
No, the tablet must be within 150 ft. of the desired wireless transmitter.

Does the Transmitter store data?
The Access-Point / Receiver is the primary storage location of data. The transmitter
only stores 1 reading at a time, once this reading is transmitted to the receiver and
overwritten with the next reading.

How many readings do CTC wireless transmitters take per day?
The number of readings is a user defined setting.

What is the battery life of WA100 Series Transmitters?
Battery life varies depending upon the number & type of readings, and the environment
the transmitter is in. The more readings taken per day, the shorter the battery life will
be.

0

1000

2000

3000

4000

5000

6000

7000

0 5000 10000 15000 20000 25000 30000 35000#
of

 R
ea

di
ng

s
th

at
 c

an
 b

e
ta

ke
n

Samples taken per reading

Battery life as a function of samples taken
per reading

Frequently Asked Questions

75

Is battery life covered under warranty?
Battery life is not covered under CTC warranty.

Is the battery on my WA100 Series transmitter replaceable or rechargeable?
No, WA100 Series transmitters are disposable units. The molded design seals the
transmitter from the environment, and therefore does not allow for replaceable or
rechargeable batteries.

Will my WA100 Tablet talk to my data analyzer?
Various analyzers support data import. The CTC Wireless Software that runs on our
tablet and access point will provide the data in a variety of common formats that can
be used for data import/export.

Is the data processing done in the sensor or the software?
The data processing is done in the software. The Wireless transmitter collects the data,
which is transferred to the tablet and processed using CTC wireless software.

Do I own my data?
Yes, CTC wireless transmitter users own 100% of data collected.

Can I “nickname” sensors?
Yes, you can nickname sensors. CTC suggests renaming transmitters to note their
location and position on the machine they are monitoring.

Can I create groups of transmitters?
Yes, you can create transmitter groups. Transmitter groups are typically used to logically
group all the transmitters associated with a single machine.

What format is my data stored in?
The raw data is fed through Bluetooth Characteristics, the software converts the raw
Bluetooth data to a JSON file format which is fed into a Microsoft SQL Database.

How many readings will my tablet store?
Out of the box, the tablet will store over 100,000 readings. The number of readings
is only limited by the storage space of the tablet. Storage is expandable through the
Micro SD slot.

How can I access historical readings?
Historical readings are accessible through each transmitter reading view in the CTC
Software, or directly through the SQL database.

Frequently Asked Questions

76

Is there a lag time between when the reading is taken and when I can view my data?
Yes, the lag time is related to how long it takes the transmitter to collect and transmit
the signal. For instance, a reading of 10000 data points @ 1000 Hz will take 10 seconds
to complete, the time to transmit will take a couple of seconds. With more readings,
the transmission will take proportionally longer. Signal strength also plays a factor in
transmission speed.

What is the IP rating of CTC wireless transmitters?
WA102 carries an IP67 rating, which means it will remain protected and fully operational
in almost all industrial applications, including those where the transmitter is exposed to
water spray, precipitation, dust, and other airborne fine particles.

